Vad är AI & Deep Learning?
MV.MINDNET – Deep learning-plattform från MABRI.VISION
Vad betyder artificiell intelligens?
Termen artificiell intelligens (AI) eller AI (Artificial Intelligence) är inte tydligt definierad.
En definition misslyckas helt enkelt för att begreppet intelligens inte är klart. Termen artificiell intelligens (AI) skapades på 1950-talet och är därför historiskt format och föremål för många influenser.
Termen speglar visionen och den "stora bilden". AI:n berör flera tekniska och vetenskapliga discipliner och används ofta (inklusive av oss) som en catchy marknadsföringsterm. När folk pratar om AI inom mätteknik eller bildbehandling menar de oftast maskininlärning (ML, maskininlärning) eller "djupinlärning" (DL, djupinlärning).
Villkoren bygger på varandra enligt följande. Artificiell intelligens (AI) → Machine Learning (ML) → Deep Learning (DL)
Historisk kurs
Även om artificiell intelligens ofta kallas en trend, är det ingalunda ett nytt fenomen. Redan på 1950 -talet delade forskare tron att tankeprocessen inte är begränsad till den mänskliga hjärnan. Efter att forskningen om ämnet avstannat, särskilt på 80 -talet, gav teknikföretag som Google fältet en ny högkonjunktur på 2000 -talet. Idag är artificiell intelligens en integrerad del av vår vardag.
Vad betyder maskininlärning (ML)?
Inom bildbehandling finns det i princip två olika sätt att hantera ett problem:
Regelbaserad programmering
- Manuell formulering och programmering av regler efter att resultaten har beräknats eller definierats
Maskininlärning
- Träna en modell om data
- Oberoende inlärning av mönster från data
- Klassificering eller uppskattning av resultatmängder
Vilket tillvägagångssätt som är bättre beror på applikationen och måste noggrant utvärderas eller systematiskt bestämmas. Regelbaserade metoder, särskilt inom mätteknik och bildbehandling, är väl lämpade för att fatta beslut baserade på tydliga mätfunktioner och regler. Om reglerna inte är kända eller bara kan extraheras systematiskt från bilder med stor ansträngning kan en maskininlärningsprocess vara det bättre tillvägagångssättet. Maskininlärningsprocesser används vanligtvis vid bildbehandling för svåra segmenteringsuppgifter, vid teckenigenkänning (OCR / OCV), mönster- och avvikelseigenkänning, objekt- och bildigenkänning och bildklassificering. I moderna tillämpningar kombineras vanligtvis båda metoderna på ett meningsfullt sätt.
Maskininlärningsteknik (ML)
Grovt sett finns det tre olika inlärningsmetoder för maskininlärning.
Djupinlärning kontra maskininlärning
Moderna AI -applikationer bygger nästan uteslutande på djupa artificiella neurala nätverk (ANN). Det speciella med nätverken är att de också kan utföra komplexa uppgifter och manuell extrahering av funktioner kan helt undvikas. Ett ANN kan därför självständigt utföra komplexa uppgifter.
- Deep learning är en gren av maskininlärning
- DL -metoder är baserade på artificiella neurala nätverk med flera mellanliggande lager
Artificiella neurala nätverk (ANN)
Metoder för djupinlärning är baserade på artificiella neurala nätverk.
Dessa nätverk är inspirerade av de (biologiska) neurala nätverken, det vill säga en del av ett nervsystem. Artificiella neurala nätverk är byggda i lager. Ett lager eller nivå består av flera artificiella neuroner. Det finns flera dolda nivåer mellan en ingångs- och utgångsnivå. Strukturen får namnet "djupa" neurala nätverk på grund av dessa dolda nivåer.
Convolutional Neural Networks (CNN)
Så kallade "convolutional neural networks" (CNN) används mest vid bildbehandling. Dessa nätverk, inspirerade av den visuella cortex, består av flera funktionskartor. Dessa funktionskartor motsvarar lagren i ett artificiellt neuralt nätverk och genereras av faltning. Konvolutionsoperatorerna producerar olika egenskaper/funktioner, såsom kanter. Inom bildbehandling bör en CNN kunna generalisera funktioner och representera dem i allt högre abstraktionsnivåer.
Källa: LeCun, Yann, et al. "Gradient-baserat lärande tillämpas på dokumentigenkänning." Proceedings of the IEEE 86.11 (1998): 2278-2324
Källa: Lee, Honglak, et al. "Oövervakat lärande av hierarkiska representationer med konvolutionerande djupa trosnätverk." Communications of the ACM 54.10 (2011): 95-103.
MV.MINDNET, plattformen för djupinlärning från MABRI.VISION, kombinerar den senaste tekniken och praktikinriktade lösningar.
Varför MABRI.VISION
MABRI.VISION bygger och utvecklar högkvalitativa lösningar för maskinsyn och modulära testsystem för dina produktionsprocesser. Vårt modulsystem gör det möjligt för oss att snabbt och effektivt tillhandahålla lösningar för dina testuppgifter.
Innovativa lösningar, vår passion!
Innovativa lösningar, vår passion!
Innovation är grunden för kontinuerlig tillväxt i modern industri. Vi lever detta på nytt varje dag och börjar i sinnet hos vårt team av experter. Fokus ligger alltid på våra kunders fördelar och krav. Vi brinner för att implementera inspektionsprocesser som sträcker sig från AI-baserade datorsynslösningar till 100% inline-komponentmätning för sofistikerade produkter. Vi använder de senaste generationerna av de mest avancerade teknikerna för vår mätteknik. Med denna filosofi vill vi göra produktionsprocesser mer effektiva och dynamiska.
AI, bearbetning, kontroll - en mjukvaruplattform
AI, bearbetning, kontroll - en mjukvaruplattform
Med målen för Industry 4.0 och en kontinuerlig förbättringsprocess ökar kraven på testautomatisering, gränssnitt och effektiva utvärderingsalgoritmer. Vi på MABRI.VISION har insett denna trend och går ett steg längre. Vårt mjukvaruteam utvecklar modulära mjukvaruplattformar som kombinerar alla komponenter i moderna testsystem. Om det behövs kan vi utöka utvärderingsalgoritmer med neurala nätverk, kartlägga snabba gränssnitt till systemkontroller och integrera revisionsspår, batchrapporter, framstegsgrafer eller databaser efter behov.
Ett starkt team, alltid där för dig.
Ett starkt team, alltid där för dig.
Som vår kund är du alltid i framkant. Vårt team av visionsexperter, konstruktion, mjukvaruutveckling, el, montering och support finns alltid där för dig. Med moderna företagsprocesser och IT -lösningar är snabbhet ett viktigt mål. Med våra servicelösningar fram till 24/7 support stöder vi din produktion med effektiva lösningar.
End-to-end-lösningar, allt från en enda källa.
End-to-end-lösningar, allt från en enda källa.
Du tänker i processer, vi tänker i lösningar: det är därför vi erbjuder våra kunder nyckelfärdiga testsystem som kan integreras sömlöst i dina produktionsprocesser. Våra experter ger råd om planering och design i början av ett projekt. Om teknik behöver utvärderas genomför vi förstudier och inline -tester. På MABRI.VISION erbjuder vi systemkonstruktion, programmering och automatisering från en enda källa. Vi kan optimera komplexa utvärderingar och tester direkt med systemkontrollen och alla kundgränssnitt.
Kontakt.
Behöver du mer information om en specifik produktgrupp eller har du en specifik produktförfrågan? Använd vårt kontaktformulär eller ring oss.
- MABRI.VISION GmbH Philipsstrasse 8 52068 Aachen
- +49 241 5652 7930
- info@mabri.vision